
51

International Journal of Recent Research and Review, Vol. VII, Issue 2, June 2014
 ISSN 2277 – 8322

Implementation of an Unique & Fast String Matching Algorithm
Suresh Fatehpuria, Ankur Goyal

Computer Science Engg., Rajasthan Technical University, Yagyavalkya Institute of Technology, India
Email: sureshjecit@gmail.com

Abstract— There are many number of fields where the string
matching application may be needed. The fields like
processing of signals in telecommunication, searching DNA
patterns, searching a word pattern in a Word document or
over the web are some of the examples of string matching. The
algorithm presented in this paper is a very unique idea for
finding a string in the given text. The algorithm preprocesses
the whole string by indexing all the characters of the string
followed by storing the indexes in a two dimensional array.
The resulting two dimensional array contains the index entry
of every occurrence of every character present in the string. In
the second phase i.e. the matching phase, the pattern is rolled
over the given string until the match is found (or a match
doesn’t occur). Initially or when the mismatch occurs then for
shifting the pattern on every mismatch, the help of two
dimensional array is taken since it contains all the indexes of
all the characters present in the text and consequently it
ensures relevant shifts only. The time complexity for matching
processes is very much less as compared to other proposed
algorithms because of a very few numbers of shifts are made
with the help of two dimensional array.
Keywords— Pattern, shifting, matching, efficient, complexity.

I. INTRODUCTION

The problem of pattern matching is one of the
extensively studied problems in Computer Science
because of its large number of applications in different
areas like text processing, image processing, speech
analysis, data compression, bio informatics etc. The
problem of the pattern matching is to find all the
occurrences of a pattern P of length m in text T of
length n [1].

Due to being very important concept, there have
been numerous algorithms to match a pattern in the
text. Some of those are less efficient and are in less
use; some of those are more efficient and
consequently are in more use. Some of those are very
specific to the situation where one should use those.
The efficiency and performance of an algorithm is
measured with the help of some techniques named
time complexity and the space complexity. The

notations like Ο, Θ and Ω are used in finding the
efficiency of an algorithm or code.

As the time is passing on, people are trying to
execute everything in faster manner. In such a
situation reducing the time complexity is really
required. Although the space complexity doesn’t
matter in some of the cases since the memories are
getting cheaper day by day, still the researchers are
trying to reduce the space complexity too.

II. LITERATURE SURVEY

There have been a big number of algorithms for
finding a pattern in a given text. The most basic
algorithm that doesn’t include any pre-processing of
data is the Naïve or Brute Force algorithm [1]. The
time complexity of the searching phase of Brute Force
algorithm is O (mn). In practical, almost all the
algorithms perform pre-processing of the pattern and
then find all the valid shifts. So in general, a pattern
matching algorithm have two of the phases: one is
“pre-processing phase” in which the pattern is pre-
processed and another one is “matching phase” in
which a match is tried to find. A brief of some famous
algorithms are stated below.

The Rabin Karp algorithm [2] proposed by Michal
O. Rabin and M. Karp in 1987 uses hashing to find a
pattern in a given text. Although the worst case
running time for the algorithm is as much as Naïve
algorithm’s complexity is, still it works better in
average case. Rabin and Karp assume that each and
every character of the alphabet ∑ is a decimal digit. In
general case we can assume that each character is a
digit in radix-d notation, where d = |∑| and ∑ = {0, 1,
2…9}. Then a string of k consecutive characters as
representing a length - k decimal number can be
viewed [1]. The time complexity of preprocessing
phase is O (m) and of searching phase is O (n+m).

52

The Knuth-Morris-Pratt algorithm [3] or KMP
algorithm was first thought by Donald Knuth &
Vaughan Pratt and independently by James H. Morris
in 1974. They all three people published it jointly in
1977. In this algorithm, when the pattern is tried to
match with the text then the partial part (but not the
full pattern) of the pattern that got matched (if any), is
remembered with the use of “prefix function”. With
the help of that partial part we can determine the
corresponding text characters. This allows us to
determine that certain shifts are invalid. This
phenomenon of skipping certain shifts avoids the
repetitive full text searching and consequently reduces
the complexity. The time complexity of preprocessing
phase is O (m) and of searching phase is O (nm).

The Boyer Moore Algorithm [4] or BM algorithm
was proposed by Boyer and Moore in 1977. The
algorithm is considered as a benchmark in the
industry. Although many times it has been modified
and improved by different authors. The algorithm
starts the matching process form the right end of the
pattern and the pattern is shifted from left to right. For
shifting the pattern the algorithm takes the help of
good suffix and bad character heuristics. These
heuristics allow the algorithm to skip many of the
characters from matching attempt. The time and space
complexity of preprocessing phase is O (m+|Σ|) and
the worst case running time of searching phase is O
(nm + |Σ|). The best case of the algorithm is O (n/m).

III. PROPOSED UNIQUE SOLUTION

The algorithm proposed in this paper consists of two
phases:
1. Pre-processing of text (instead of pre-processing of
pattern).
2. Matching of pattern in the given text.

A. Phase 1: Pre-processing of the text

This phase pre-processes the given text. For pre-
processing the text, a two dimensional array arr[][] is
taken. The array should have ∑ numbers of rows
where ∑ is the size of the alphabet (number of
identical characters in the text), no matter how many
columns are there. Each row of the array (from 0th

row) is associated with exactly one character of the
alphabet. For example: row 0 may be associated with

character a, row 1 may be associated with character b,
and so on. Now the whole given text is also
considered to be in an array and consequently the text
characters are assumed to be indexed starting from 0
for the first character. Now first character of the text is
traversed and the index of the character is stored in the
two dimensional array corresponding to that particular
character. This process is repeated for every character
present in the text. The outcome of this whole process
is the two dimensional array that contains the index
entry for every occurrence of every character of the
text. Formation of this matrix ensures the gaining of
all the knowledge about every character present in the
text viz. the occurrence of the characters along with
their places (indexes).

B. Phase 2: Matching of the pattern in the given text

In this phase, first of all, the first character of the
pattern is checked. After getting the first character of
the pattern, the index of that character’s first
occurrence is known from the two dimensional array
by searching the index in corresponding row. Once
the index is retrieved, the matching process is started
from the right next index of the retrieved one. This
process ensures skipping all the words those does not
start from the first character of the pattern. For
instance, if the alphabet size ∑ is let say 26, then all
the words those start from at least 25 different
characters will be skipped. During the matching
process, if the mismatch occurs, the next occurrence
of the pattern is retrieved from the two dimensional
array and again the matching process is started at the
newly retrieved index.

We understand the working of the algorithm with an
example: we consider a text and the pattern with
alphabet size ∑ being 27, i.e.,
∑={‘a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’,’k’,’l’,’m’,’n’,’o
’,’p’,’q’,’r’,’s’,’t’,’u’,’v’,’w’,’x’,’y’,’z’,’_’}. The text
and the pattern are as shown below.

Text all_systems_have_to_be_similar

Pattern sim

The given pattern sim has to be found in the given
string all_systems_have_to_be_similar. The above

53

described procedure is used to find the pattern in the
text.

A. Phase 1: Pre-processing of the text

In this phase the whole text is indexed starting from
the first character by putting the text in an array and
the index for all the characters of the text is put in a
two dimensional array corresponding to the character
itself.

a l l _ s y s t e m s _ h a v

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

e _ t o _ b e _ s i m i l a r

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Fig.1 The text after indexing

Fig. 2 The two dimensional array containing the index of
the characters of the text

0 1 2 3 4

a 0 13 28

b 20

c

d

e 8 15 21

f

g

h 12

i

j 24 26

k

l 1 2 27

m 9 25

n

o 18

p

q

r 29

s 4 6 10 23

t 7 17

u

v

w

x

y 5 14

z

__ 3 11 16 19 22

54

The above figure shows the two dimensional array
containing the index entry for every character present
in the text.

B. Phase 2: Matching of the pattern in the given text

Now as the two dimensional array is prepared, the
matching of the pattern can be started. For matching
process, the first letter of the pattern sim is observed.
This is s. Now the first occurrence of s can easily be
found in the two dimensional array. In two
dimensional array we can see that the first occurrence
of s in the text is at position 4. So, the search can be
started from the character indexed with 4.

Text all_systems_have_to_be_similar

Pattern sim

But, since the first character will match for sure, the
matching process can be started from the right next
character of the pattern with the corresponding
character in the text.

Text all_systems_have_to_be_similar

Pattern sim

As it can be seen that a mismatch occurred at the
second character, so again two dimensional array is
looked up for getting the index of next occurrence of s
and it is 6. So the pattern is kept under the index of 6
of the text and search is started from the character
indexed with 7.

Text all_systems_have_to_be_similar

Pattern sim

Again a mismatch occurred at second character of the
pattern and the next occurrence of s is at index 10. So
the matching process is started from the character
indexed 11.

Text all_systems_have_to_be_similar

Pattern sim

Again a mismatch occurred at second character of the
pattern and the next occurrence of s is at index 23. So

the matching process is started from the character
indexed 24.

Text all_systems_have_to_be_similar

Pattern sim

And finally the full match occurred and the pattern
found at the position 23 in the text.

After going through this example we can easily see
that algorithm takes least number of steps in matching
process as compared to other algorithms. Our
algorithm took only two shifts for matching the shifts
successfully. The algorithm skips most of the words in
the text while searching a pattern. The most beneficial
thing is that if there is more than one occurrences of
the pattern in the text then all of them can be found in
a very short period of time.

IV. PROPOSED ALGORITHM

A. Phase 1: Pre-processing of the text

1. n ← length (text)
2. ∑ ← alphabet size
3. for i ← 0 to n-1
4. pos ← index of text [i] in array
alphabet []
5. j ← a [pos]
6. arr [pos] [j] ← i
7. a[pos] ← a[pos] + 1
8. return arr[][]
9. for i ← 0 to ∑ - 1
10. do if (alphabet [i] = pattern [0])
11. then nowset ← i
12. end of loop

B. Phase 2: Matching of the pattern in the given text

1. for i ← 0 to EleInRow - 1
2. jump ← jump + 1
3. count ← 1
4. do for j ← 1 to m – 1
5. do if (pattern [j] = Text
[(arr[nowset][i]+j)])

55

6. then count ← count + 1
7. if (count = m)
8. then Print “pattern
found at position” arr[nowset][i] “with” jump
“number of jumps”.
9. k ← 1
10. end inner for loop
11. else
12. end of the inner for loop
13. if (k ≠ 1)
14. then print “given pattern is not found”

V. TIME COMPLEXITY ANALYSIS

The time complexity for the above described two
phases are as described below.

A. Phase 1: Time complexity of the first phase

This phase runs a for loop for n times (0 to n-1),
(where n is the length of the text) that puts the index
of each and every character of the text in a two
dimensional array arr[][]. Once the for loop is
executed completely we get a two dimensional array
containing all the indexes of the characters present in
the text. So the time complexity due to for loop is O
(n).
This phase also contains the process of finding the
character in the alphabet alphabet[][] that matches
with the first character of the pattern pattern[0]. This
forces us to traverse the only row in two dimensional
array that contains the indexes of the first character of
the pattern and that’s the glory of our algorithm. The
process of finding this association takes at most
alphabet_size numbers of steps using a for loop. So,
the complexity of this step is O (alphabet_size) or O
D(∑). so, the whole phase results the complexity of O
(n+∑) with the assumption that all other steps of the
algorithm can be executed in constant time.

B. Phase 2: Time complexity of the second phase

The second phase of the algorithm is responsible for
matching the pattern in the text with the help of two
dimensional array arr [][]. This phase consists of two
for loops: one outer and one inner. Both of two are
responsible for extracting the index entries of the first
character of the pattern one by one from the two

dimensional array and matching the pattern’s
characters in the text with the help of the extracted
index.

For extracting the index from the two
dimensional array, the outer for loop runs for at most
EleInRow times, where the EleInRow is the number of
elements (index entries) in the row that keeps the
index entries of the first characters of the pattern. For
example, if the pattern is approved and the text
contains 10 number of a’s, then there will be 10 index
entries in a’s row of the two dimensional array and the
value of EleInRow will be 10.
For matching the pattern in the given text, the inner

for loop runs for m-1 times (1 to m-1), for each time
the outer for loop runs. All other assignments,
condition checks and print functions can be assumed
to be done in constant time and consequently can be
ignored while calculating the complexity.
Thus the total time complexity for this phase is O
(EleInRow-(m-1)), which is very low as compared to
O (mn) (i.e. the complexity of many other algorithms).

VI. COMPARISON

The following table, table 1 gives a tabular
comparison of the complexities of various algorithms
with the proposed algorithm.

TABLE I
COMPARISOIN OF COMPLEXITITES OF

MAJOR ALGORITHMS WITH THE NEWLY
PROPOSED ONE

Algorithm Pre-processing
Time

Matching Time

Naïve String
Search

No Preprocessing Θ ((n-m+1)m)

Rabin- Karp
algorithm

Θ (m)
Θ (n+m)

Θ((n-m+1)m)

Knuth-Morris-
Pratt algorithm

Θ (m) Θ (n)

Boyer Moore
Horspool
algorithm

Θ (m+|∑|) O(nm)

56

Jumping
Algorithm

O(n+∑)
O((m-1)

EleInRow)

VII. CONCLUSION

This paper presents a very new idea for finding a
pattern in a given text by pre-processing the text. The
pre-processing phase of Jumping Algorithm helps the
matching phase in taking the jumps. The asymptotic
analysis shows that the pre-processing phase that
takes O (n+∑) time for putting the indexes in two
dimensional arrays may be a little bit costly but the
matching phase is amazingly cheaper in comparison
of other existing algorithms. For small texts, the
matching phase is almost constant. This less number
of matching is what the key idea behind the algorithm.
Since the algorithm shows its excellent behaviour in
terms of complexity, it can be adopted in string
matching’s practical applications.

VIII. FUTURE WORK

Although the algorithm proves its effectiveness up to
the mark in the matching phase, still the scope of
improvement is always there. The pre-processing
phase that takes O (n+∑) time can be improved
somehow. Furthermore pre-processing phase needs a
two dimensional array for storing the indexes of the
characters of the text. The number of rows of this two
dimensional array should be equal to the alphabet size
∑ and so, the number of rows can easily be decided,
but it is difficult to say how many columns should be
taken as we can’t say that how many times a particular
character may occur in the text. This problem can
perhaps be reduced by taking some other data
structures like linked list so that the number of
required spaces for storing the indexes could be
decided dynamically and ultimately the storage need
could be reduced.

IX. REFERENCES

[1] Thomas H. Corman, Charles E. Leiserson, Ronald L.
Rivest and Clifford Stein, Introduction to Algorithms
(2nd Ed.), ISBN 81-203-2141-3, Prentice Hall of
India, 2004

[2] Richard M Karp, Michael O. Rabin, “Efficient
randomized pattern-matching algorithms”, IBM

Journal on Research Development, Vol. 31, No. 2,
1987, pp. 249-260

[3] Donald Knuth, Jr. H. Morris, Vaughan Pratt, "Fast
pattern matching in strings," SIAM Journal on
Computing, Vol. 6, No. 2, doi: 10.1137/0206024,
1977, pp.323–350

[4] R.S. Boyer, J.S. Moore, "A fast string searching
algorithm", Communication of the ACM, Vol. 20, No.
10, 1977, pp.762–772

